Homework 2

A. Chorin

February 6, 2005

Homework 2, due Wednesday Feb. 9.

- 1. Write a Monte-Carlo program to evaluate $\int_0^1 \frac{e^{-\sqrt{1-x^2}}}{\sqrt{x}} dx$ (you may have to do importance sampling to get anything at all). As you sum the samples estimate the variance and the error; by making several runs with different sample sizes check that you error estimates are realistic. Estimate the number of samples needed to get an error $\leq \epsilon$, where $\epsilon > 0$ is a tolerance. Find the value of the integral with an error ≤ 1 per cent.
- 2. Let $H_0, H_1, H_2, ...$ be Hermite polynomials (H_n is a polynomial of degree n, $\int_{-\infty}^{+\infty} H_m H_n e^{-x^2} / \sqrt{\pi} dx = 0$ if $n \neq m, = 1$ if n = m). Suppose you want to evaluate $I = \frac{1}{\sqrt{\pi}} \int_{-\infty}^{+\infty} g(x) e^{-x^2} dx$, where g is a given function; let ξ be a Gaussian variable with mean 0 and variance 1/2. Show that for all b, c, $I = E[g(\xi) + bH_1(\xi) + cH_2(\xi)]$. However, the variance of the estimator is not independent of b, c. What values should a, b take to yield an estimator of least variance?
- 3. Let η be a random variable which takes the value 1/2 with probability 1/2 and the value -1/2 also with probability 1/2. Let $\Xi_n = (\sum_{i=1}^n \eta_i)/n$, where the η_i are independent variables with the same distribution as η . Find the values that Ξ_n can take and their probabilities for n = 3, 6, 9, and plot their histograms together with the pdf of the limit of Ξ_n as $n \to \infty$.
- 4. Check the correctness of the derivation of Box-Muller sampling scheme (note that there are typos in the class notes).
- 5. An exponential variable with parameter λ has the density $f = \lambda e^{-\lambda x}$, $\lambda > 0$. If you are given n independent samples of such a variable, how do you find the maximum likelihood estimate of λ ?